当前位置:好一点 > 教育资讯 >高考政策 >正文

sbr工艺流程图

更新:2023年02月10日 07:25 好一点

好一点小编带来了sbr工艺流程图,希望能对大家有所帮助,一起来看看吧!
sbr工艺流程图

sbr工艺流程图

1、进水阶段:指从向反应器开始进水至到达反应器最大容积时的一段时间。

2、反应阶段:是SBR员主要的阶段,污染物在此阶段通过微生物的降解作用得以去除。
3、沉淀阶段:沉淀的目的是固液分离,相当于传统活性污泥法的二次沉淀他的功能。
4、排水阶段:目的是从反应器中排陈污泥的澄清液,一直恢复到循环开始时的最低水位,该水位离污泥层还要有一定的保护高度。
5、待机阶段:沉淀之后到下个周期开始的期间称为待机工序。

污水处理SBR工艺流程

SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。

城市污水处理工艺流程图

污水处理工艺

污水处理工艺分为三级:一级处理:物理处理、机械处理,如格栅、沉淀或气浮,去除污水中所含的石块、沙子、脂肪、油脂等。二级处理:生化处理。污水中的污染物在微生物的作用下降解转化为污泥。

三级处理:污水的深度处理,包括通过氯化、紫外线或臭氧技术去除污水中的营养物质和消毒。根据不同的处理目标和水质,有些污水处理工艺并不包括上述所有工艺。

1、一级处理

机械(一级)处理段包括格栅、沉砂池、初沉池等结构,用于去除粗颗粒和悬浮物。处理的原理是通过物理方法实现固液分离,实现污染物与污水的分离,这是污水处理的常用方法。

所有废水处理工艺都需要机械(初级)处理(尽管有些工艺有时省略初级沉淀池)。城市污水一级处理中bod5和ss的典型去除率分别为25%和50%。

生物除磷脱氮废水处理厂一般不推荐采用曝气沉砂池,以避免快速降解的有机物的去除;在原有废水水质特性不利于除磷脱氮的情况下,根据后续工艺的水质特点,需要对初沉的设置和设置方法进行认真的分析和考虑,以保证和改善后续工艺的除磷、脱氮等水质。。

2、二次处理

污水生化处理是一种二级处理,其主要目的是去除不沉降的悬浮物和可溶的可生物降解有机物。其工艺组成多样,可分为活性污泥法、AB法、A/O法、A2/O法、SBR法、氧化沟法、稳定塘法、CASS法、土地处理法等处理方法。目前,大多数城市污水处理厂采用活性污泥法。

生物处理的原理是通过生物作用,特别是微生物的作用,完成有机物的分解和有机物的合成,从而将有机污染物转化为无害的气体产物(CO2)。富含有机物(微生物群或生物污泥)的液体产物(水)和固体产物;剩余的生物污泥通过沉淀池内的固液分离从沉淀池内的净化生物污泥中分离出来。从污水中清除。

3、三级处理

三级处理是水的深度处理,二级处理后的废水处理工艺,是废水的最高处理措施。目前,我国的污水处理厂还不多。

对二级处理后的水进行脱氮除磷,用活性炭吸附法或反渗透法去除水中残留的污染物,用臭氧或氯气对细菌和病毒进行消毒,然后将处理后的水作为水送至中间水道冲厕、喷洒街道、绿化带、工业用水、消防等水源。

由此可见,污水处理工艺的作用只是通过生物降解转化和固液分离,从而净化污水,使污染物富集到污泥中,包括一级处理段产生的一级污泥和二级污泥。

扩展资料:

未来发展的趋势。

1、行业整体的绩效提高。内部行业的绩效成为当务之急,所以国家十二五重大专项里面,专门有项目要建立国家范围的行业管理绩效体系。

2、服务成为我们行业的核心任务,成为行业的核心环节。这跟发达国家是一致的,发达国家基本上服务业占整个环保产业,设备、投资、建设大概占50%左右,我国估计占10%左右,所以有这么大的空间,内部的结构调整面临从建设到发展的需求。

没有哪一个运营主体在一个国家层面上能够占绝对的主导地位,不论是国有企业也好,外资企业也好,事业单位也好,还是股份制公司也好,都呈现了多样化形式。

所以以资产为基础的整合机会,这个不容易。这是我们面临的一个困难。但是另一方面,又提供了很好的契机。如果看国际上做资产整合的话,早期是英国做的比较成功,它先解决整合的问题,然后再解决市场化的问题。

3、从技术层面上看,水资源问题,本身开始出现流域化的趋势,过去叫“多龙治水”,越来越强调从流域的层面协调,从流域的尺度上,不仅仅是协调水资源,而且协调再生水。只有从流域角度上考虑这个问题的时候,才能取得最大的效益。

参考资料来源:百度百科-污水处理

百度百科-废水处理厂

污水处理厂工艺流程图。以及简单工艺介绍

污水处理工艺

污水处理工艺分三级:一级处理:物理处理,通过机械处理,如格栅、沉淀或气浮,去除污水中所含的石块、砂石和脂肪、油脂等。二级处理:生物化学处理,污水中的污染物在微生物的作用下被降解和转化为污泥。

三级处理:污水的深度处理,它包括营养物的去除和通过加氯、紫外辐射或臭氧技术对污水进行消毒。可能根据处理的目标和水质的不同,有的污水处理过程并不是包含上述所有过程。

1、一级处理

机械(一级)处理工段包括格栅、沉砂池、初沉池等构筑物,以去除粗大颗粒和悬浮物为目的,处理的原理在于通过物理法实现固液分离,将污染物从污水中分离,这是普遍采用的污水处理方式。

机械(一级)处理是所有污水处理工艺流程必备工程(尽管有时有些工艺流程省去初沉池),城市污水一级处理BOD5和SS的典型去除率分别为25%和50%。

在生物除磷脱氮型污水处理厂,一般不推荐曝气沉砂池,以避免快速降解有机物的去除;在原污水水质特性不利于除磷脱氮的情况下,初沉的设置与否以及设置方式需要根据水质特性的后续工艺加以仔细分析和考虑,以保证和改善除磷除脱氮等后续工艺的进水水质。

2、二级处理

污水生化处理属于二级处理,以去除不可沉悬浮物和溶解性可生物降解有机物为主要目的,其工艺构成多种多样,可分成活性污泥法、AB法、A/O法、A2/O法、SBR法、氧化沟法、稳定塘法、CASS法、土地处理法等多种处理方法。目前大多数城市污水处理厂都采用活性污泥法。

生物处理的原理是通过生物作用,尤其是微生物的作用,完成有机物的分解和生物体的合成,将有机污染物转变成无害的气体产物(CO2)、液体产物(水)以及富含有机物的固体产物(微生物群体或称生物污泥);多余的生物污泥在沉淀池中经沉淀池固液分离,从净化后的污水中除去。

3、三级处理

三级处理是对水的深度处理,是继二级处理以后的废水处理过程,是污水最高处理措施。现在的我国的污水处理厂投入实际应用的并不多。

它将经过二级处理的水进行脱氮、脱磷处理,用活性炭吸附法或反渗透法等去除水中的剩余污染物,并用臭氧或氯消毒杀灭细菌和病毒,然后将处理水送入中水道,作为冲洗厕所、喷洒街道、浇灌绿化带、工业用水、防火等水源。

由此可见,污水处理工艺的作用仅仅是通过生物降解转化作用和固液分离,在使污水得到净化的同时将污染物富集到污泥中,包括一级处理工段产生的初沉污泥、二级处理工段产生的剩余活性污泥以及三级处理产生的化学污泥。

由于这些污泥含有大量的有机物和病原体,而且极易腐败发臭,很容易造成二次污染,消除污染的任务尚未完成。污泥必须经过一定的减容、减量和稳定化无害化处理井妥善处置。污泥处理处置的成功与否对污水厂有重要的影响,必须重视。

如果污泥不进行处理,污泥将不得不随处理后的出水排放,污水厂的净化效果也就会被抵消掉。所以在实际的应用过程中,污水处理过程中的污泥处理也是相当关键的。

4、除臭工艺

其中物理法主要包括稀释法、吸附法等;化学法包括吸收法、燃烧法等;生物法包括生物制剂法、生物过滤法、填充塔式生物脱臭法和生物洗涤法,植物提取液雾化喷淋法等。

扩展资料

未来发展的趋势。

1、行业整体的绩效提高。内部行业的绩效成为当务之急,所以国家十二五重大专项里面,专门有项目要建立国家范围的行业管理绩效体系。

2、服务成为我们行业的核心任务,成为行业的核心环节。这跟发达国家是一致的,发达国家基本上服务业占整个环保产业,设备、投资、建设大概占50%左右,我国估计占10%左右,所以有这么大的空间,内部的结构调整面临从建设到发展的需求。

没有哪一个运营主体在一个国家层面上能够占绝对的主导地位,不论是国有企业也好,外资企业也好,事业单位也好,还是股份制公司也好,都呈现了多样化形式。

所以以资产为基础的整合机会,这个不容易。这是我们面临的一个困难。但是另一方面,又提供了很好的契机。如果看国际上做资产整合的话,早期是英国做的比较成功,它先解决整合的问题,然后再解决市场化的问题。

3、从技术层面上看,水资源问题,本身开始出现流域化的趋势,过去叫“多龙治水”,越来越强调从流域的层面协调,从流域的尺度上,不仅仅是协调水资源,而且协调再生水。只有从流域角度上考虑这个问题的时候,才能取得最大的效益。

参考资料来源:百度百科-污水处理

参考资料来源:百度百科-污水处理厂

什么是序批式活性污泥法(SBR)?

序批式活性污泥法,是活性污泥法的一种形式,集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。由于运行中采用间歇式的形式,因此每一反应池是一批一批地处理污水,故此得名。由于序批式活性污泥法运行操作的高度灵活性,在大多数场合都能代替连续活性污泥法,实现与之相同或相近的功能,因此改变序批式活性污泥法的操作模式,就可以模拟完全混合式和推流式的运行模式。整个工艺过程由进水、曝气、沉淀、排水和闲置等工序组成,依次在同一个反应池中周期性运转。这种工艺的主要特点是在一个构筑物中反复交替进行缺氧发酵和曝气反应,并完成污泥沉淀作用。因此序批式活性污泥法工艺既能去除有机污染物,又能去除氮、磷,同时还可免除二沉池和污泥回流设施,具有工艺流程简单、投资省、运行费用低、占地少、耐冲击负荷、管理方便、泥水分离效果好、不会发生污泥膨胀、出水水质好等优点。

工作原理:序批式活性污泥法的反应机制以及污染物质的去除机制和传统活性污泥基本相同,仅运行操作不一样。下图为序批式活性污泥法的基本操作运行模式。

主要参数:序批活性污泥法水力滞留期(HRT)一般为20~50天,BOD5容积负荷通常为0.13~0.3千克/(米3?天),污泥龄(固体滞留期)5~15天。

求啤酒废水处理工艺中 UASB+SBR法的范例

摘 要

处理规模:总设计规模3500m3/d。
2、设计水质:CODCr=1200mg/L;BOD5 =800mg/L;
SS=150mg/L;pH=6~9。

3、排放标准 CODCr≤100mg/L;BOD5≤20mg/L;SS≤70mg/L;
pH=6~9。

4、工艺流程概况:
废水 格栅井 调节池 UASB反应罐 SBR反应池 达标排放
5、工程投资:239.51万元;
6、工程占地:1632m2;
7、运行成本:0.91元/m3
8、劳动定员:2人
9、建设工期:3个月
1.概 述
啤酒生产主要以大麦和大米为原料,辅以啤酒花和鲜酵母,经长时间发酵酿造而成。
该公司在生产过程中产生的废水主要来源于玉米洗涤浸泡等工艺过程。该污水具有污染物浓度较高、pH值低等特征,若不经处理直接排入水体中,会导致水体严重富营养化,破坏水体的生态平衡,对环境造成严重污染。
公司领导和员工本着发展经济促进企业效益与治理污染、保护环境协调发展的思想,为树立企业良好的社会形象,消除企业健康发展的隐患,决定在上级环保部门的监督管理和支持下,按照我国环境管理的要求,委托专业环保公司,选择技术先进、运行稳定、投资合理的污水处理技术治理其生产污水。

2.废水水质水量
2.1 设计水量
本工程设计规模:3500m3/d,平均流量:146m3/hr;

2.2 设计水质
参考同类工程的数据和业主提供的水质指标,确定本工程设计水质如下:
CODCr=1200mg/L;BOD5 =700mg/L; SS=400mg/L;
PH=5~6。

3.排放标准
根据当地环保部门要求,处理后的水质要求达到《污染物综合排放标准》(GB8978-1996)一级排放标准。即:
CODCr≤100mg/L;BOD5≤20mg/L;SS≤70mg/L,PH=6~9。

4.编制依据
业主提供的相关资料和要求
《污染物综合排放标准》(GB8978-1996)
《室外排水设计规范》 (2000年版)
《给水排水设计手册》
《混凝土结构设计规范》GB50010-2002

5.工艺方案选择与论述
5.1废水水质分析
啤酒生产以大麦和大米为原料,辅以啤酒花和鲜酵母,经较长时间发酵酿造而成,废水主要来源于麦芽*、糖化、发酵、洗瓶及灌装等工序。啤酒废水富含糖类、蛋白质、淀粉、果胶、醇酸类、矿物盐、纤维素以及多种维生素,是一种中等浓度的有机废水,可生化性好。废水连续排放,水质水量有一定波动。

5.2工艺选择
啤酒废水属中高浓度有机废水,有很好的可生化性,但生产季节性较强,排放不连续,尤其是地面冲洗水,水量和浓度波动较大。该厂将各车间的废水汇集到一起,因无机负荷并不高,不适合目前国内常用的“厌氧+好氧”方法中对原水COD>6000mg/L的要求。
啤酒废水中含有大量有机碳而氮源含量较少,在进行传统的生化处理中,其含氮量远远低于BOD:N:100:5(质量比)的要求,致使有些啤酒厂采用传统活性污泥法时,在不补充氮源情况下处理效果很差,甚至无法运行。经多种方案比较,确定采用CASS法处理啤酒废水。
在好氧单元中,经过对膜法工艺和普通活性污泥法的综合比较后我们认为:较膜法工艺来说,由于CASS法省去了沉淀池,它们的总投资和运行成本基本相同,但应用于工程中,CASS工艺较膜法工艺更加稳定可靠,而且其使用寿命长;而较普通活性污泥法,SBR应用在此工程中不管在投资还是运行费用等方面的优势更加明显,因此我们选择CASS工艺。
循环活性污泥系统简称为CASS(Cyclic Activated Sludge System)工艺,是一种在SBR工艺和氧化沟技术的基础上开发出的新工艺。CASS池是系统的核心。污水中的大部分污染物在此降解、去除。它将生物反应过程和泥水分离过程集中在同一个池内进行。CASS反应池分为生物选择区、兼氧区和好氧区。选择区的基本功能是防止污泥膨胀,污水中溶解性有机物能够通过酶反应而被污泥颗粒吸附除去,回流泥中的硝酸盐可在该选择区内得以反硝化;在兼氧区内,有微量曝气,基本处于缺氧状态,有机物在此区内得到初步降解,同时也可除去部分硝态氮;好氧区为曝气区,主要进行硝化和降解有机物,同时也进行硝化反硝化过程。CASS池是一个间歇反应器,在此反应器内不断重复地进行曝气与非曝气过程。污水按一定周期和阶段得到处理,每一循环有下列各个阶段组成:进水/曝气/污泥回流阶段——完成生物降解过程;非曝气/沉淀阶段——实现泥水分离;滗水/剩余污泥排除阶段——排出上清液;闲置阶段——恢复活性污泥活性。
    上述各阶段组成一个循环操作周期,根据污水水量和浓度,它的运转方式可采取6周期/天、4周期/天、3周期/天的形式,每周期运行时间分别为4、6、8小时。循环过程中,首先进行充水、曝气和污泥回流,CASS池内的水位随进水而由初始的设计最低水位逐渐上升至最高设计水位。当经过一定时间曝气与混合后停止曝气,在静止的条件下使活性污泥絮凝并进行泥水分离。沉淀结束后通过移动堰表面滗水器排出上清液并使水位恢复至设计最低水位,然后重复运行。为保证系统在最佳条件下运行,必须定时排泥,排出剩余污泥的过程一般在沉淀结束后进行,污泥浓度可高达10g/L,所排出的剩余污泥量要比传统的活性污泥处理工艺少得多。
5.3工艺流程框图
栅渣 鼓风机
啤酒废水 格栅机 集水井 提升泵 调节池 CASS反应池 接触池
泥饼外运 污泥脱水机 螺杆泵 污泥贮池
图1 污水处理工艺流程方框图

5.4工艺流程说明
废水经格栅除去粗大杂物后,进入集水池内,经水泵提升进入CASS反应池中,使废水中的大部分污染物在池中得到降解和去除。废水在这里得到生化处理,处理后的废水排入接触池,经消毒后排人水体。CASS反应的剩余污泥排人污泥贮池中,经污泥泵打入污泥浓缩脱水一体机脱水,脱水后的干污泥外运,压滤机滤出水返回集水池内。
5.5处理效果预测
污水从调节池进入CASS池,再由CASS池出水,几乎所有的污染物均在CASS池内去除,结果见表4。
表1 主要构筑物进出水水质及去除率
名称 水质 进水mg/L 出水mg/L 去除率%
CASS池 生物选择吸附区 CODcr 1200 450 63
BOD5 700 200 71
SS 400 180 55
兼氧区 CODcr 450 200 56
BOD5 200 150 15
SS 180 140 22
主曝气区 CODcr 200 70 65
BOD5 150 30 80
SS 140 70 50
接触池 CODcr 80 40 50
BOD5 30 10 67
SS 70 30 57
总去除率 CODcr 1200 70 94以上
BOD5 700 10 98以上
SS 400 30 92以上
6.电气自控
6.1 动力配电
污水处理站总装机容量约219.87kW,其中运行功率约为134.0kW。动力线由厂区内配电房引入至污水处理站内配电柜。
6.2 自控系统
污水处理站采用PLC自动控制和就地按钮箱手动控制。在操作台上设有转换开关,当转换开关处于自动位置时,由PLC按预先编好的程序自动控制;当转换开关处于就地按钮箱手动位置时,可在机旁人工控制。
各提升泵可据液位高低利用自控系统控制水泵开启与关闭,当池内的污水量较小由一个水泵运转或间歇运转,当池内的污水量较大由两个水泵运转或其中一个间歇运转避免因无水而损坏水泵或因单个水泵的流量不足而引起的污水外溢。
CASS池利用PLC及电动阀根据时间控制自动切换工作状态,实现进水、曝气、滗水等一系列动作,从而两池自动交替运行,也可以根据情况切换到手动状态,进行人为干预以便调整两池的运行状态。

7. 主要建构筑物设备一览表
7.1主要构(建)筑物一览表
序号 构(建)筑物名称 工艺尺寸(m) 主要设计参数 数 量
1 集水井 L*B*H=2.0×2.0×4.0 总容积:16m3
结构形式:地下式钢混 1座
2 格栅间 L*B*H=3.0×2.0×3.0 总容积:18m3
结构形式:半地上式钢混 1座
2 调节池 L*B*H=16.2×9.0×4.5 总容积:656m3
结构形式:半地上式钢混 1座
3 CASS反应池 L*B*H=19.0×9.0×5.0 总容积:855m3
结构形式:半地上式钢混
容积负荷:
0.24kgBOD/m3·d 2座
4 污泥贮池 L*B*H=4.0x3.0x3.0 总容积:36m3
结构形式:半地上式钢混
HRT = 16hr 1座
5 接触池 L*B*H=6.0x3.0x3.0 总容积:54m3
结构形式:半地上式钢混
HRT = 15min 1座
6 污泥脱水机房 建筑面积:27m2 结构形式:砖混结构 1座
7 工房 建筑面积:60m2 结构形式:砖混结构 1座
说明:本设计不含站区围墙、地面绿化及道路硬化。
7.2主要设备一览表
序号 设备名称 设备型号 主要参数 单位 数量 备注
1 机械细格栅 RAG-500 栅条间隙10mm
功率:0.37kW 套 1 不锈钢
2 污水泵 CT-5-11-100 功率:11kW 套 2 配自耦
3 潜水搅拌器 QJB15/4 功率:15kw 台 2
4 污水泵 CT-5-11-100 功率:11kW 台 2 配自耦
5 污泥回流泵 CT-51.5-65 功率:1.5kW 台 4 配自耦
6 鼓风机 SSR200 风量:32m3/min
电机功率:45kW 台 3 2用1备
7 曝气器 KKI215/D90 / 套 1200 含空气支架、管件
8 滗水器 XPS-560 滗水能力560m3/h 套 2
9 污泥泵
10 浓缩压滤脱水一体机
11 电控系统 / / 套 1 含电气仪表

8.工程投资估算及经济技术分析
8.1 工程投资估算
8.1.1 土建投资估算
表8.1 土建投资估算表
序 名 称 单位 数量 型 号 规 格 总 价 备 注
号 ( m ) (万元)
1 格栅井 座 1 2.5×1.0×3.0 0.56 钢砼
2 集水井 座 1 2.0×2.0×4.0 1.20 钢砼
3 调节池 座 1 16.2×9.0×4.5 49.20 钢砼
4 CASS反应池 座 2 16.0×9.0×5.0 54.00 钢砼
5 污泥贮池 座 1 4.0×3.0×3.0 2.70 钢砼
6 污泥脱水机房 m2 1 27 2.16 砖混
7 工房 m2 1 60 4.80 砖混
8 小计(T1) 114.62
8.1.2 设备投资估算
表8.2 设备投资估算表
序号 设备名称 设备型号 单位 数量 单价 总价 备注
1 机械细格栅 BG4820-5 台 1 0.97 0.97 不锈钢
2 污水泵 CT-51.5-65 台 2 0.41 0.82 含自耦
3 污泥泵 CT-51.5-65 台 1 0.31 0.31
4 污水泵 CT-52.2-80 台 2 0.46 0.92 含自耦
6 污泥泵 CT-52.2-80 台 2 0.46 0.92 含自耦
7 水下鼓风机 WRC-100 台 2 5.10 10.20 含消音器等配套附件
8 曝气器 KKI215/D90 套 400 0.02 6.00 含空气支管、管件
9 滗水器 200m3/h 台 2 4.76 9.52
10 螺杆泵 I-1B2' 台 1 0.38 0.38
11 带式压滤机 XMY25/6300 台 1 2.86 2.86 含配套附件
12 加药系统 / 套 2 2.47 4.94 含计量泵
13 电控系统 / 套 1 11.60 11.60 含电气仪表
小计(T2) 157.48
8.1.3 工程总投资估算
表8.3 工程总投资估算表
号 项 目 名 称 构 成 方 式 费 用 备 注
(万元)
一 土建工程 114.62
二 工艺设备 157.48
三 设备配套、运杂费 (二)×3% 4.72
四 安装工程 (二)×13.5% 21.26
五 本工程直接费合计 (一)+(二)+(三)+(四) 211.64
六 本工程直接费税金 (五)×3.4% 5.51
七 本工程间接费
1 工程设计费 (五) ×5% 10.58
2 工程调试、培训费 (五) ×5% 10.58 含技术培训
3 本工程间接费合计 1+2 21.16
八 工程税金 [(七)]×5.6% 1.19
九 本工程总投资估算 (五)+(六)+(七)+(八) 239.51

备注:
1.本工程总投资只包括污水处理站内部分;
2.土建投资估算不包括除主体构筑物之外的其它附属设施及措施费等相关费用,预算以施工图纸为准;
3.标准排放口按当地环保部门要求,业主自行解决;
4.化验仪器由业主根据工程需要自行采购;
8.2 运行成本分析
8.2.1 运行成本计算
电费
本工程装机容量约为219.87kW,其中运转功率为134.0kW,电费按0.62元/kW计,处理水量按3500 m3/d计:
E1=134.0×24×0.62÷3500=0.57元/m3污水
(2)药剂费
每天投加PAM的量为5.95kg,单价为30元/kg;
则加药费用为:0.05元/m3污水。
(3)人工费
人均工资福利按20元/天·人计,定员3人,则
E3=20×3÷3500=0.02元/m3污水
(4) 自来水耗
用于配药及实验室的自来水量每天约为20吨,吨水费用约为2.0元,则每天水费约为:
E3=20×2.0÷3500=0.01元/m3污水
(5)总运行费用为:
E4=E1+E2+E3 =0.57+0.05+0.02+0.01=0.65元/m3污水(不含折旧费及维修费)
8.2.2 经济效益分析
经核算,沼气的产生量约为2250m3/d,按热值计算,每10000m3相当于8吨标煤,每吨标煤按400元计,则全年沼气产生的效益约为:
2250×365×10-4×8×0.04=26.28万元/年
8.3工程实施计划
工程实施计划表
工程阶段 11月 12月 1月 2月 3月
可行性研究
施工图设计
土建施工
安装工程
9.质量保证
9.1确保处理水达标排放;
9.2处理系统运行稳定、安全、可靠;
9.3按环保样板工程设计,达到优质工程质量标准;
9.4终身有偿服务;终身提供免费技术咨询。
表8.2.1 电耗一览表
序号 设备名称 功率(kW) 运转时间(h) 单位 数量 备注
1 机械细格栅 0.12kW 6 台 1
2 污水泵 1.5kW 24 台 2 一用一备
3 污泥泵 1.5kW 2 台 1
4 污水泵 2.2kW 24 台 2 一用一备
5 污泥泵 2.2kW 1.5h 台 2
6 水下鼓风机 11kW 18h 台 2
7 滗水器 1.1kW 3h 台 2
8 螺杆泵 2kW 3 台 1
9 带式压滤机 4.0kW 3 台 1
10
SBR是Sequencing Batch Reactor的简称,我国通常称为序批式活性污泥法。1969年荷兰国立卫生工程研究所将处理医院污水的连续流氧化沟改为间歇运行,取得了令人注目的效果。从中得到启发,世界各国学者开始着手间歇式活性污泥法的研究开发。1979年美国R. Irvine等人根据试验结果首先提出SBR工艺。
近年来,伴随着监控与测试技术的飞速发展和SBR法专用设备滗水器的研制成功,以及电动阀、气动阀、电磁阀、水位计、泥位计、自动计时器,特别是计算机自动控制系统的应用,使监控手段趋于自动化,SBR工艺的优势才充分显露出来,引起广泛重视,得以迅速推广应用。
SBR法工艺简单,不设二次沉淀池,间歇(或连续)进水,间歇排水。在单一反应池中完成进水、反应、沉淀、滗水、闲置五道工序。
与传统活性污泥工艺比较,SBR法具有下述工艺特点:
1.工艺流程简单,节省投资。
2.生化反应推力大,处理能力强。研究表明,SBR反应器中的活性污泥具有较高的生物活性,其微生物核糖核酸(RNA)是普通活性污泥的3~4倍。在SBR反应器中,随着曝气进行有机物(F)逐渐减少,而生物固体(M)逐渐增加,污泥负荷(F/M)随时间减小,生化反应在时间上呈推流状态,F/M梯度也达到理想的最大,具有较强的污染物去除能力。
3.不会发生污泥膨胀,运行效果稳定。污泥膨胀多为丝状细菌过剩繁殖,绝大多数丝状菌,如球衣菌属等都是专性的好氧菌。在SBR反应池中,沉淀滗水阶段的缺氧或厌氧环境与反应阶段的好氧环境不断交替,能有效抑制专性好氧细菌的过量繁殖,因此能形成以絮凝性微生物为主体的生物絮体,不发生污泥膨胀,运行效果稳定。
4.耐冲击负荷,操作弹性大。
5.SBR法停曝后在理想静止状态下进行沉淀,泥水分离效果好。
5.5废水处理效果分析
各工艺阶段的处理效果预测如下:
表5-2:处理效果分析表
名称 单位 竖流沉淀池 UASB反应池 SBR反应池 总处理率
进水 出水 进水 出水 进水 出水
CODcr mg/L 12000 <10000 10000 <1000 1000 <100 >99%
BOD5 mg/L 8000 <7000 7000 <400 400 <20 >99.7%
悬浮物 mg/L 2500 <750 750 <500 700 <70 >97%

以上就是好一点整理的sbr工艺流程图相关内容,想要了解更多信息,敬请查阅好一点。

与“sbr工艺流程图”相关推荐

每周推荐

pvc管内外径规格尺寸对照表

pvc管内外径规格尺寸对照表

时间:2023年01月26日



最新文章

公司介绍  联系我们
  鲁ICP备2021028409号-10

好一点 淄博机智熊网络科技有限公司版权所有 All right reserved. 版权所有

警告:未经本网授权不得转载、摘编或利用其它方式使用上述作品